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3. STATEMENT OF PROBLEM

Solitons in stimulated Raman scattering are a coherent transient
phenomenon, in which short pulses of coherent (pump) radiation
are created in an envelope of lunger wave length (Stoxes)
radiation.

L a2 o

In a Raman active medium with homogeneous broadening solitons can
be created from a large class of initial conditions, including
those appropriate for spontaneous Raman scattering and for Raman
amplifiers with weak Stokes probe. The resulting pulse of pump
radiation will initially have a width comparable to the coherence
decay time.

The problem addressed in the work reported here is to determine
the detailed dynamics of socliton propagation in media with
homogeneous and inhomogeneous broadening. Of particular interest
are the rates of soliton narrowing and decay and the frequency
and temporal characteristics of the developing optical pulse.
Soliton decay occurs in broadened media, if the two optical beams
are not exactly in resconance with the Raman transition, a
situvation which to some extent frequently occurs in practice. It
is hence important to determine the limitations on soliton
stabili%y imposed by trhis effect.
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Both numerical and ana.iytica. metnods have been employed.
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4. SUMMARY OF RESULTS

A. RESULTS FOR NARROW SOLITONS (HYPER TRANSIENT REGIME)

If the temporal soliton width is much smaller than the coherence
decay time, broadening can be treated as a perturbation.
Analytical results have been obtained for this case by using the
method of asymptotic perturbation theory, based on the inverse
scattering transform (IST) and aliso a method based on constants
of motion, which is more directly related to the physics of the
problem. Both approaches give the same results.

The following results are obtained for homogeneous.ly broadend
media:

For exact Raman resonance the width decreases with gain according
to an inverse square roo%t law, and becomes independent of the
initial width In the large gain limit. For off resonant Raman
scattering the soliton amplitude, defined as the maximum
relative pump intensity, decreases exponentially with increasing
gairn. Since a relation exis*ts between amplitude and freqguency
detuning, this means that the averade detuning increases in the
process of propagation. The decay coefficient is proporticnal tc

the square o0f the Inltlal freguency mismatch. The width

decreases more slowly than In the resonant case, reaches a
minimum at an amplitude of 0.5 and increases bpeyond that point.

Numerical studies confirm these results. The agreement :s
excellient for exact resonance, and very good for the off
resonant case. In the latter case at large gains the rate of
soliton decay is found to be somewhat smaller than predicted,
while the rate of soliton narrowing is somewhat larger. The
reason appears to be an aimest linear frequency chirp, which
develops between the leading edge (lower frequency) and trailing
edge (higher frequency) of the soliton. This is a second order
effect which canrot be modelled in the approximation emplovyed.
The effect is small however, as .ong as the detuning is small
compared to the inverse soliton width, even if it should be
larger than the Raman i1ine widtn.

For inhomogeneously broadend mecia analytical results have been
obtained for the resonant case, and numerica. results for both
resonant and off resonant case:

In the resonant case the soliton width decreases very wealkXly with
gain like the inverse 0f the third root. 7This is due to the fact
that for inhomogeneous broadening the frequency spectrum is more
sharp.y lioca.ized. lence the temporal autocorreiation function
nas vanishing slicpe at the orig:.:n, and narrowing occurs only to
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second order in the width. The predictions agree excellently
with numerical results.:

In the off resonant case two different cases occur. If the
frequency detuning is small compared to the line width, weak
soliton decay and narrowing occurs. If the detuning exceeds the
line width, however, complicated envelope modulations of the
optical pulses occur. Soliton amplitude and width go through
cycles of decrease and increase, with an overall tendency for
decay and pulse broadening. An analytical theory for this type
of behavior has not yet been developed.

B. RESULTS TOR BROAD SOLITONS (TRANSIIENT REGIME)

In the transient regime where the soliton width is comparable to
the coherence time analiytical methods based on perturbation
theory are no longer adeguate. Numerical studies have been
performed, which show that the main features found In the
hypertransient case also occur in thic regime. In particular
pulse narrowing and decay occurs poth in the homogenecusly and
inhomogeneously broadened case.

The rate of decay is found to be much less initially than
expected from the first order theory. As a result a pulse
narrowing to a width of about 20% of the coherence time is
possible even in the off resorant case. A maximal frequency
offset of about 5% of the Raman l:ine width can be toierated in
this case. These results are encouraging for soliton experiments
in media with broad inhomogeneous lines like methane or optical
fibers.

A detailed discussion of the results under sections A. and B.
above are given in the Appendices A. and 3., which are self
contained. Appendix A. contains a math ematlca4 ana.iysis of
perturbation theory for the homogeneously broadened case based on
soliton theory (IST). Appendix B. gives a more nhysica.
discussion of homogeneous and inhomogeneous broacen:ing, which
emphasizes the relavant physical processes, and employs
differential conservation laws for photon energy and momentun.

C. SATURATING SOLITONS rOR IOMOGENEUUS HIIOADINING
{ZYPERTRANSIZINT RECIMI)

Tor sufficiently high fleid Intensities medium saturatliovn ociurs.,
Raman so.iitons exist also in this case, and the totai soliton
width can be much larger than the pulse rise time, giving rise
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to a top hat type temporal profile. Soliton theory is quite
complicated for this system, and we have studied the resonant
case in the absence of Stark shift effects. Detailed results are
discussed in Appendix C.

If medium saturation is strond., the rate of soliton narrowing
per unit propagation distance is independent of the soliton
width, and the latter decreases linearly with distance. This is

much stronger than the inverse square root law found for the
unsaturated case, and makes this type of Raman soliton very
attractive for pulse narrowing techniques. Effects of frequency
detuning and Stark shift remain to be studied.
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ABSTRACT

The propagation of a soliton in a Raman medium in the

presence of collisional decay of coherence and detuning fron
Raman line center is studied. The spatial denendence of so.itcn
width, position and amplitude is calculated vy treating *ne

decay of coherence as a pertuirbati.un. Two approachnes are used,
one based on the inverse scattering transform and *he c<%her
employing constants of motiorn. 3Both give identica. resu.<ts wnich
are confirmed through the numerica. integration of the eg.a*.crs
of Raman scattering. These results confirm the pheromera ~¥¢
soliton narrowing and decay. wnich have been observed
experimental.ly.
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INTRODUCTION
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The occurrence of so.itons in a Raman medium has been
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demonstrated experimentally [1!.
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the optical pulse. Here and in the following we denote partial

differentiation with respect to these wariables by a subscript.

The first term in equation (3! describes the decay of coherence

of the polarization of the medium with a rate € . This term :is
assumed small compared to the rate of change of polarization of

the medium and s *reated as a perturbation to the exact.y

solvab.e eguations. Equations ‘i) to (3, for the case €& =0 have
been solved by the IST "2, 4. Tre solutions to eqguaticns 1) to
{3) which we sha.. s%tudy nere are the trave.:ng waves ir one
soliton form. They are given o7y

X M. expliB. sech A, 14

AS - V}(: W, (‘op “ann AY - L W &

Aj = V/(, lw, ==np 3" sech'A ) L
where -

AlT . X = L.T & 3Ty - L.T - 8. Ty

The constants Qg and irtermine *ne ‘empora. width anrd
detuning of the f:e.is fr.m exar- Pamar rescnance. They are
re.ated tO *"he rea. a1 .Tag.nary part of *The eigenva. ie X’ which
sharacter.zes tTne °re 3°_1*3n s52.UuTion 1n “he framewcrx ¢ IST

22,4
b, - 0. z;y,‘:zq; f 3

Tre parameters O ard d are -ela*ed * +ho rasiiie a* *hne

Iarresponding pi.e Yo *ne Transmiss.ion O

ietermire “ne *em; ra. z-sivi.n and he

Nrar = b ra - : "3 .
..... € <O, the parame*ers (L. and «p 2
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o= 5 - X !

}a:=w_ o

v
1yt
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parameter o . From equation (20) we obtain:

CJR‘C - LOR('C—'C), (26)

C
[Q(0)/ (1 -R(ON)I(1 -R)/¢Q for C«JI#O,

exp( 4 € tc)

= 1 + 4 € }AI(O)zﬁf for O_ = 0.

AT

NUMERICAL RESULT

In ¢igures 1 to 3 we compare the results of a numerical

solution of equations (i) %c {3) to the perturbation analysis
¢ above. The exact one soliton form of the optical fields was used
' as initial condition a* X =C, while the medium polarization X
was set equal to zero at T=0. The temporal position of the
fields was chosenr such as to render the corresponding error
smaller than one part in *thousand. The parameters ¢ and g
were determined for the numericai solution for the optical fields
from the maximal relative pump intensity and the area under the
temporal pump intensity curve. The constant Uz was determined
for off rescnant so.litons both from the pump intensity and width
by egquation (23, and from the temporal derivative of the relative
ohase be*ween pump and S+okes amplitude (see equations (S) and
(6 ;.

DENONDT g -

B

Rl b

_hree differer* ases ave STOWnD. T
f€or a.. cases, € =C .. and Wy =C. C
=0.% in caase 2, and € =0.4 and wr =0.
rd 2 sat:isfy trne corndlticn Trat ot
omD

red to *Te driving term:
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Figures 2a and 2b sn2ow the same parame*ers f-r case I WwW.""
detuning Gy =0.5. Tlie agreement (5 exce.lsr* far cthe soll*on
position and very go»>d for the so.iton wid*r. Larger
discrepancies occur .: so.iton width for ¥ 170, In this g:on
the rate of increase in scliton width :s sma..er than predi-ted
The reason for *his is mainliy tre behavizcr =f *the soliton phase.
According to equations (5] and {6) the re.a*:.ve phase of pump and
Stokes fie.d shows lirnear *ime dependence .7 *le asymptovic
*emporal region away from *ne so..%'on center ~orresponding toooa
~onstant frequency. The re.at.ve phase for *he numeri~a.
solution on the other hand shows an a.most L:nea' ‘rnque"tw chirp
with ioca. frequency at so.i%ton center ~.nse *7 the ara.y*:ra.
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result. The chirp increases with increasing propagation
distance. 1In figures 2c and 2d we show the soliton amplitude
(maximal relative pump intensity &€ ) and the constant Mg . The
latter is determined both from soliton width and amplitude (solid
line) by equation {25) and from the relative phase (dotted line)
by eguations (5) and (6). Both methods begin to disagree at
iarger propagation distances.

Figures 3a *o 3d show the same results for case 3, in which
condition (27) for the validity of perturbation theory is n
longer satisfied. The numerical results do however show the same
quaiitative features as in case 2. The guant:itative amount of
soliton decay and broacening is smaller than predicted from
perturbation theory. 7Figure 3d shows that the parameter as
determined from the scliton width disagrees strongly with the
va.ie obtained from the phase, the latter srowing a nuch
stronger .oca.i detuning (smaller Pk ) than predicted.

SUMMARY

We have o5h*ained results for the propagation of Raman solitons in
a homogeneous.y broadened medium by asymptotic perturbation
theory and from constants of the motion. Both approaches give
identical results. which agree with results obtained in earlier
work for the resonan* case (purely imaginary eigen values) and
extend to the non res>nant case (general! complex eigenvalues).
The experimental.ly observed phenomena of soliton narrowing and
decay [7] are explained by these results. Numerical studies show
very gond agreement in the region of wvalidity of this approach,
ard show *hat the gualitative features are predicted correctly

even In *ne ~ase where broadening carnot te *reated as a
pert.rzatisn.

"re Y us 'X.T. wishes to acknow.edge stimulating discussions
Wit Ka.lip °n the subject presented nere.

orted by the S Army Cffl-e 5f Fesearcn under
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FIGURE CAPTIONS

Figure la: The sguare of the inverse soliton width is shown
as a function of distance for zero detuning. The initial soliton
width is equal to 1 and the Raman line width is equal to 0.1. The
straight solid line is the analytical result, and circles are
the numerical results.

Figure 1b: An exponentia. function of the temporal soliton
center is shown as a function of distance. Parameters are as in
?‘gu*e la. The straight solid line is the analytical result, and
circles are the numerica. results.

Figure 2a: The square of the inverse soliton width is shown
as a function of distance for a detuning of 0.5. The initial
soliton width is egual tc 1 and the Raman .ire width is equal to
0.1. The solid line is the analytical result, and circles are

the numerical results.

Figure 2b: An exponential function of the temporal soliton
center is shown as a function of distance. Parameters are as in
Figure 2a. The soi1id l1ine iIs the analytical result, and circles
are the numerical resul*s.

Tigure 2c: The maximal relative pump intensity is shown as a
function of distance Para meters are as In TFigure 2a. The solicd
sine is the analytical result, and circles are the numerical
resu.ts.

Tigure 24: Numerica. resuits for the cronstant as a
function of distance are shown. Parameters are as in Figure 2a
The so0lid lirne is the result odbtalined from *ne pumd ;ntensit;
profile, and circles indicate the result ootained from the locca.l
frequency profile

Tigure 3a: The square of the inverse soiiton width is shown
as a function of distance for a detuning of 0.5, The initial
soliton width Is equal to ! and the Raman .ine width is equal to
0.4. The so.lid line is the analytical result, and circles are
the numerical results

Tigure 3b: An exporential function of the temporal soliton
center is shown as a function of distance. Parameters are as in
Figure 3a. The solicd line is the analiy%tical result, and circles

are the numerical results.

Figure 3c: The maximal relative pump intensity is shown as a
function of distance. Parameters are as in Figure 3a. The solid
line is the analiytica. resuilt, and circles are the numerical
resuits.
Figure 34: Numerica. resu.*s for the constant as a
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function of distance are shown. Parameters are as in Figure 3a.
The solid line is the result obtained from the pump intensity
profile, and circles indicate the result obtained from the local
frequency profile.
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ABSTRACT
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differential conservation laws fcr ernergy ang momenvL«m. o Wt
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'5], and admit an infinite number of additional differential

conservation laws. For [ >0 the corresponding equations are no

longer conservation laws, but include dissipative terms.
Solu%ions for f= 0 are found by the method of IST, where

a certain function of the physical amplitudes is used as a
potential in an associated linear wave equation (see references

given above). Two formulations of the initial value problem are
possibie. In the first formulation the dependent variables are
assumed to be given for a.. positions at some initial time, anrd
their time evolution is sought. In this case the phonon
amp.itude (¢ appears as a potential in the associated linear
egquation 5. In the second formulation the dependent variables
are assumed to be given at a.l times for some initial position,
and their spatia. evo.iution is sought. The soliton vpotentiai is
now a function of the optical fields [15]. While this

formulatiocn directly solves the physica. initial value problien,
where *he optical fields are dgiven at the entrance to the
scattering nmediun, the corresponding conservation laws are more
difficult to rhandle, since *they involve non local functions of
the fields. We sha.. therefore use the conservation laws
obtained from the first formulation. The first two conservation
laws involving *the pnonon amp.itude G are given by .5,24°

* *

/ ~ - = - 9} re.
[ Q% iz - 0.5 S, 2 Qe \

[}

*
Im!{ 0Q Q7 Je* Im{ 6.8 3 C )7= - 2 r Im{ 2 Q x ) . (2.7

-

The first equation is a conservation law for polarization

energy. ba’an-:ng the time change of polarization energy density

» the medicm with the divergence of the energy current carried

v the optical flields. For X'=O the pump is depleted in space

time regions cof Increasing medium po’arization, ard depletion :s

—ezersed in region of decreasing po.arization. For ¥ >0 energy
lcst to the medium, and the direction 2f energy fliow for the
elds depends on the net balance between the rates of

iarizaticon change and energy loss. In steady state only the

ss *erm Is Kept, and the pump is aliways cepleted

3

ftU e M
)'k

3

W

R4 6 B IR
O O w

The second equation gives a non trivial resiult on.ly fo

case, where there is a space and time dependen*t rthase difference
netweer fields and medium excita*ion, for examg.e when *he
sptical fields are nnt exactliy in resonance with the Raman
“rarnsitionr. I tnis ~ase energy and momentuml na.ance s

nrough the gereration of an op*t:ca. pnonon wave.
-1 is a momentum conservation law for this wave,

es the time change of the momentum density 0of the
ohonon wave (first term) with the divergence of tne eucess

r

moment.m current carriec py the fle.ds (second term:. The latter
current is obtained fronm 1 2.2) as
A3 * v
T - Vo= Ten O 2 \
) A?,x A? AS7 AS , m ¢ S ‘ 8
23




In the presence of coherence decay momentum is dissipated in the

medium, which is described by the right hand

116 :
Q = exp(iB} sech(A) ,

AP = V?:;;ZS;W exp(i3) sech(A) ,

AS = Iu:/ (“)R T w? tanh!{A} + I b): )

s, = 2 )AI exp(iB) sech(A) ()R tarn(A) -
33 = (2 ¢ sechz(A) -i ) ;

A= LT - MY 3 = 0T - kK

This solution describes a coherent excitat

and fields traveiling at a speed
of light. Except for a phase factor the phono
symmetric about the tempora. center (A=0)}. H
for the optical fieids are exactly balanced (s
photons are transferred back to the pump sulse
edge of the soliton.

7 smaller t

term.

We now consider the one soliton solutions for the case r

(2.9)
(2.10)
W, r2.11)
. v2.12)
w? |
ion of bcth medium
han the speed ¢
n amplitude is
ence gain ancé loss
ee 2.6) ard
in the trailin

The symmetric shape »f the phonon amplitude

N . :
. is in turn caused by a rapid phase shift In the Stokes field
;{ the soliton center. The excitation can be observed
i zperimentally as a localized pulse of pump radiation or as
(infinitely) extenced pulse of Stokes radiation with a local
dip in intensity.The temporal width of the excitation Is eqgu
IT = 1 'Wg which defines an intrinsic time scale. The sciu
will be a valid approximation to (2.1 and (2.2} if | << Wy
The freguency of the pump field is deturned from exac*t Raman
resorance Dy AW = g If Wy # 0O <+he optical fields ca
phase wave with local frequency (W-,5- . wWrhose maximum valu
50.iton center is egua. to . }AR
S = ! s ex’i¢\ , ¢>=L>, '
- CTs P T loc
2 2 2 ¢ o2
w'oc = b, - 6, L. ' L. cosh A - WL sinn A,
At maximal height *he punp pulse reacnes a fraction € <cf ¢
intensity. Zguations (2.14, suimmarize tne ooservav.e paranet
2f the socliten and their relations
AT = 1 wq b o= L. ,
; ] 2.1
g= }.(v L\)p = . I~ AW OAT ))
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1 -2
1'v = 1/¢ + 1/( W + Lp ) .

The three components of the opt
the local frequency are shown Iin figure 1.
large negative values of A the solution closely approximates

ical field Bloch vector and

For sufficiently

the physical boundary conditions for a medium extending into the
Y g

positive half plane X >0 and optical
va.ues for

assuming their asymptotic

fields wanishing or
T<C

In the presence of cohnerence decay solutions exist which

show similar features as the soliton
particular localized excitations exist which show reversal of
pump depletion [1,14,15%,16,:17;. I

coherence time {(steady state or

discussed above. In

the typical time scale cf
change for the fields is larger than or comparable to the

ransient regime),

these

solutions may appear to be cuite different from the soliiton

solutions discussed above [25]

However if the relative phase

between the optical fields varies sufficiently slowly in time,
narrowing and eventually

these soluticns will show %emporal

approximate the soliton solutions closely,
me

much smaller than the coherence ti

as the width becomes

{hypertransient regime).

Since we are primarily in%terested in the dynamics of thi

approach to the
and useful.

As a result
maximal amplitude will te general
distance, and the pulse shnapes wi
is found that to first order Iin

position and amplitude can e calcul g
account the changes in pulse shape 21
these parameters by Iintegrating eguations 2.% and
This gives ordinary differential eguations in X £

a

of coherence deca"

hypertransient regime,
the exact soliton solutions for the scivable case is appropriate

a discussion in terms of

temporal width, position and

-

.
<
“
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no

ions of propagation \
longer be symmetric. Tt

the changes in width,

T2l

corresponding integra.s. The integrals

solutiorns 2.9 and 2.:1:,

L 2P e
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nctions cf X . The resulting equations are:

ated without taking into
We sha calcuiate
2.3 over tirme .
or the

are ca.cuiated by usin

however with parameters (DR and Wy
(2.18;
= = 2 }4, , (2.16)
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The solutions are most easily expressed in terms of the

parameters and for = 0:
}AR(')() = /‘«R=const , (2.27)
r -_— 2 .
g (X)) = Q(0) exp(-L , L = 4 s Ko X
wz— / 1 - 2 -~ - Y
R" _?/(J- S )/ )AR ' 2..8,
= € L .
(JI ( I3 for - £ 0 ;
) 2
LD=&>(0)+4K~1 for W =0
R R .

The coefficients involving the propagation distance can
be expressed in terms of the steady state gain G or the
transient gain G' . The transient gain G' iIs a measure for the
spatial change of the soliton fields and is appropriate for a
discussion of *the Internal dvnamics of soliton propagation. It
is defined from equaticon {2.12) as GC' = 2‘k;7 . On the other
hand for soliton experiments the steady state gain G Is more
relevant, since its value is limited by processes like higher
order Stoxes generation to (approximately) G < 25 . This
parameter determines the growth of Stokes intensity for
undepleted pump in the steady state regime:

:S = IS(O) exp(G,) , G =2 1 r . (2.19)
In terms of G the coefficients in (2..7}) anda ({(2.18) are

given by:

2

4 =2 ¢ L =2

K }LR)z G . 12.20)

For exact Raman resonance (Q& = Q) we obtain for the soliton

width from (2.18):

dt =atioy V1«2 i pationtec (2.21)
A AT (0) [ L : rdt’C\)z G for ! 6-4:(0))‘@ << 1,

a

A K V for ! F At(O))zG >> 1

In the limiting case 0of small gain and width the width is seen to
decrease linearly with gain. The corresponding coefficient :is
proportional to the sguare of the initial width. In the opposite
limit of large gain the width becomes independent of its initia:l
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value, and decreases with the inverse square root of the gain.
This 1limit is not actually reached for realistic gain values in
the hypertransient regime. Numerical results show however that
the soliton width does indeed become almost independent of <the

initial width at large gain.

For non zero detuning the soliton amplitude ¢ decreases
exponentially, while the parameter ug , whose inverse is the
maximal local frequency of the corresponding phase wave, remains
constant. If the soliton width is of the order of the coherence
time, and the detuning is much smaller than the line width, we
have:

Ke® A0 (8T% . L ® 26 (pof (4T)%) 2 (2.22)

showing that the attenuation coefficient . for the soliton

amplitude is proportional to the sgquare of the detuning. This

explains the observed rapid decay of Raman solitons for off

resonant SRS [14]. The soliton width reaches its minimum for
R = 0.5 and increases after that point.

IZI. SCLITON PROPAGATICN IN INHOMOGENEQOUSLY BROADENED MEDIA

In inhomogeneous.y broadened media the matrix element Q ,
which determires the medium polarization at the optical
freguencies Is obtained as a statistical average over molecular
subpopulations, each with different freguency shift 4 from

exact Raman resonance in the laboratory frame. The statistical

< . : . . . N - s . A
distribution is characterized by the line shape function g4 }.
If we denote the ma‘'rix e.ement for the population with frequency
shift A bty & | eguatisn 2.4 for *the matrix element is
replaced by:

A : a - =
ol = A 7 - , (3.1)
A 4

Q = 1A 3046 (3.2)

We integrate (3.1;, substitute *he result irnto (3.2) and obtain:
T
A ' o / !
Q (Trt) = det’ 2xp’ 14 1 T--T 1Y 0.5 S (€) , (2.3)
~eg ¥ +
f +
Q () = J’dt/g(t-t ) 0.5 S_(x') (3.4)
-0 ha
where D
. . A
g{v ) = dpA exp’ 1At . Zi4 )

o

. A . A
is the Fourier transform of the spectra. .ine shape function g
{temporal correlatior function).
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We note that the case of homogeneous broadening is included in
(3.4) with g{t) = exp(-§T ). This shows that in the ;
absence of medium saturation homogenecus broadening is equivalent

to inhomogeneous broadening with Lorentzian line shape. The

conservation laws (2.6) and (2.7) require the time derivative |
of Q , which is obtained from (3.4) as: i
T |
e ’ ’ |
Qt = 0.5 S+ + _ldr g{tr -t ) 0.5 S+(t ) (3.5)
0 1
N N Y

L]
where g 1is the derivative of g The last term in (3.5) is
the correction from coherence decay to the exactly solvable case.
We shall discuss here only the case of exact resonance at line

center, and of a symmetric line shape. In this case Q |is
real, and we obtain from the first conservation law in analogy
with (2.6):

(1)

(Q Qg +0.55,,=2 (g ¢) . (3.6)

The correction term is calculated to leading order in the line
width by expanding the correlation function ¢

T
'l =40y @'Y + G0y Jart ey .0 (3.7)
-~
Bere Q{0) is the matrix element for vanishing line width. For
homogeneous broadening the first term gives a non vanishing
resu.t: §(0)= - t . due to the weak decrease of the lLorentzian
spectrum at large frequencies. For inhomogenecus broadening on

the other hand with a Gaussian line shape or other shape with
sufficiently fast decrease at large frequencies the first term

vanishes, and the leading contribution is of second order in the
line width. In this case we obtain from (3.6) the differential
equation:
(ddg) I, = 2 g(o) K, (3.8)

v = = / !

X jdt Q Q 2/ W R £3.9)

T
- (0) ' (0) ' _ s 2,.4
K1 5d‘c Q (Tt ) _;\;d-z Q (Tt ) —OVTT,C\)R

For the case of a rectangular spectrum with half width X the
solution is:

3 3 2 .
033(7 )= L L(0) + 0.5 ¢ K’U A S (3.10)
The relation between propagation distance and steady state gain

is in this case:

G =27 g(O)% = \17,'6‘ . {(3.21)
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giving the final result for the soliton width as a function of
gain:

A AT(0) (1 - (w/6) ([aT(0))’ G )

I-'.’/I:’l‘

The rate of decrease is now proportional to the third power of
the initial width, and the small gain limit considered in the
second line of (3.12) above is the only realistic case,

LLSLN

We have not studied the off resonant case so far. Numerical
results indicate, that the behavior can be guite complex in this
situation. For sufficiently large detuning width and amplitude
can decrease and increase aiternatively, and strong pulse
deformations may develop. We shall discuss these results In the
following section IV.

» v
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AN
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IV. NUMERICAL RESULTS

/) Y
L]

The transient SRS equations (2.4) and (2.5) were solved
numerically with the one soliton form (2..1) for the optical
fields as functions of time as initial condition at zero
propagation distance. The soliton amplitude and width were
determined for the numerical solutions from the maximal value of
.~ S and from the integral I (egquation{2.16). For inhomogeneous
. broadening a rectangular line shape was chosen for numerical
convenience, and the line was sampled a*t a finite number of
equally spaced point

22,2

e

Figure 2 compares numerical {(circles) and analytical (sol:
lines) results in the hypertransient regime and the resonant case
for homogeneous (lower curves) and inhomogeneous broadenin
(upper curves). The agreement is excellent in the latter case,
and better than 10% for the homogereous case. In this and all
subsequent cases the time scale is flxed by choosing the initial
solliton width as the unit of time. The line width is 2.. for the
homogeneous and 0.1571 for the 1nhomogeneous case, which results
‘ in the same gain per propagation distance and the same coherence
N time for both cases. The soliton width s hence only 1C0% of the
. coherence time. At a gain of 20 the homogeneous soliton has
" narrowed by about 15%, while the inhomogeneous soliton has

narrowed only by about 3%.

Yt
0

(PR

. Figures 3 and 4 compare numerical (circles) and analvtical

(solid lines) results for soliton width and relative ampl'tuce in

. the off resonant case and for homogereous broadening. Initial
liton width and line width are as before and correspond to the

hypertransient regime. The values chosen for detuning are 0.

6.5 and 1.1. These values correspond to the lower, middle and

upper set of curves in figure 3, and to the upper, middle and

AN
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iower set in figure 4. As predicted the solitor width (figure 3!
is larger for larger detuning. For the first two cases is

actually larger than predicted, with a predictive accuracy of
about 10% . Somewhat larger discrepancies occur for a detuning of
1.2 . Here the socliton width is predicted to increase, whil

the actual width almost remains constant. A similar behavior is
found for the soliton amplitude (figure 4). Larger discrepancies
occur again for a detuning of .2 , where the actual amplitude :s
larger than predicted. These discrepancies are caused by the
benavior of the phonon wave. In particuliar the lioca. freguencw
(see equation (2.13)) begins to show strong deviations from the
one soliton form {(2.13) at larger detunings, including arn a.mos*
linear freguency chirp with Increased detuning at the <railing
edge of the soliton.

[

The effects of detunin oronounced for
inhomogeneous broadening, especla..y if the detuning is
comparable to or euxceeds tne line w:dth. This is plausible in
view of the fact that the weight of nhigher frequency components
is much smaliler in the inhomogeneous case th in the homogereous
case. A thorough physical analysis and ana: y_‘ca- resu.%s remain
to be given. Iigure 5 shows numerical results for solitcn width
{solid lines) and amplituce (Jotted ..n for a rectangu.ar line
with a half width of 0.1571 ard an Initi

(9]
Q_\
ti
T
R
~
o1
(X e
ty
e

;

itial soliiton width of 1.0
(hypertransient regime; . The values for detuning are C.IZZ, C.:
and 0.2. At given »ropagation distance the soliton width
increases and the amplituce decreases wit: increasing de-uning.
For small detuning (0.05) the width decredseg as a function of
distance, while it increases initially fcr large detuning (0.2
and has a maximum at a gain of abourt 12. At apout the same gain
the soliton amplitude reaches a minimum. This benavior is in
strong contrast to the homogeneous case.

Soliton narrowing is much stronger i the fransient reg.me
where the temporal soliton width is comparable to the coherence
time. In the analytical treatment above we found that the
narrowing rate per gain unit is proportional. to the second power
of tnhe line width for homogeneous and *o tne third pcwer for
inhomogeneous broadening. Figures € and 7 show numerica. resu.ts
for width and amplitude for homogeneous anc Inhomogeneosuis
broadening. The initial so.liton width is 1.7 and the l:ine width
s 1.0 for homogeneous and 1.571 for inhomngeneous Hrhacening

“he values for detuning are 0.CS5, 0.1 and 0.2

Tor homogeﬂpous broaden:.ng (LAgu*e 65) a detuning of ©.C¢ or
5% of the lline width must de considered a .inmit for practica.

app.icatlions Yo pu.sSe narrawing. Iin this case the soliton decays
to about 30% at a gain of 20 and narrows to a temporal width of
20% of its nitila. va.we. A+ 7% cetuning the 9C0% ampli=ude
.eve) is reacned a.ready at a gain of 7, ana the soliton wia'h
is 40% of tne initia. va.ue, 1% 15 interesting to note trat the
initial rate of soiiton decay 15 muln less than in the
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The strong inf.uence of detuning w.th on.y a few percens of
the Raman line width wii. not have severe consequenrnces for media
with broad Raman line. For media w.th narrow ..nhes however tre
frequency stability of the pump laser may ve in this range. Dur
treatment assumed monochromatic Optica. Deams with flled

frequency lertun ng. It is poss.iDle nowever tnat the Drase
fluctuations assciolated with Yhe non vranishing .aser [ine widis-
rave a similar Iinf.lence on so.llton stabilivy, Tecent

experimenta. observaT.ons SuUpDITT *rnis pOoss.iblility (26

This WOrK wWas suppGrtesl Iy e U5 Army Dffice of Teaearon.




R

(D3N Y

P ELSIS

2.+

YENAA

NEARAEN

e

LV )
B

.

&

L |

a

AN

A

PO

.

INENESENEYR

Pt
’
o 8 a L8 W

N0

SAN

Y

o T

b2

(28]

jo%}

V)

b

o ,\.. - bt ' A Rt M NV )N - A", LY Y At Skt ot Sag
REFERENCES

K.J. Druhl, R.C. Wenzel, and 5.L. Caristen: "Obser—ation of
solitons in stimulated Raman scattering”, Phys. Rev. Let<=.
51, 1171-1176 (1.983);

C.I. Zachen and W.H. Lowdermilx: "Self-induced gain and >oss
modulation in coherent, transient Raman pu.se propagation”,

Phys, Rev. Al4, 1472-1474 (1376);

N. Tan-no, 7. Shiranata, ¥. Yokxoto, and d. Irnabda: "Coherent
transient effect in Raman pulse propaga+ion", Phys. Rev. A
12, 159-168 (19375);

S.N. Zlgin and T7.3. J'Hare: "Saturation effects In transient
stimulated Raman scat*ering”, 7. Phys. B: Atom. Molec. Phys.
12, 159-163 {(19793);

F.Y.F. CThu and A.C. Scott: "Inverse scattering transform for
wave-wave scattering”, Phys. Rewv. A 12, 2060-2064 (1975);

S.2. McCall and Z... Hahn: "Self-Induced transparency",
Phys, Rev. 183, 457-435 (1969

M.J. Ablowitz, D.J. ¥aup, and A.C. Newell: "Conherent pu.se
vropagation: A zZ.spersive, lrreversinh.e pnenomenon', .
Math., Phys. 15, T052-.0958 (1974,

N, Tan-ne and Y. llguenic U"Sclifary wave so.utlions n
conerent twWO-DROYON Lu.Se Drolagatlion”, Trys. Tev., A 16,

2.31-2133 (1977,

M.J. Tornopnicki and J.¥. Toer . "Simultaneous sropagation
f short dlfferent-wave.ength optical pulses”, Phys. Tev. A

24, 2567-2583 (1981,

J2.J. Kauip: "The method of soiution for stimulared Paman

scatter.ny and twou-photon nropagatiorn”, Physica €D,
243-154 (1383),;

H. Steudel: "Scu.itons in stimulated Raman scatterinyg and

resonant two-photon propagation"”, Physica 62, 155-.78

(1983);

X.Z2. Jruhl, J.L. Carlisten, and R.G. Wenze.: "Aspects of
soiiton propagation in stimulated Raman scatterinag”, J.
Stat. Phys. 39, 615-62C (1985);

K.J3. Druhl and G. Alsing: "Effect of cocherence relaxation on
the propagation of optical soliitons: An ana.ytical and
numericai case study on asymptotic perturbation theory",
Physica 20D, 429-434 (.986);

43




T W T W W T WO W P W AT

i14. R.G. Wenzel, J.L. Carlsten, and K.J. Druhl: "Soliton
experiments in stimulated Raman scattering”, J. Sta®. Pry s
39, 621-632 (1985} ;

15, D.J. Kaup: "Creation of a soliton out of dissipation’
Physica 19D, 125-:34 {198¢);

16. H. Steudel: "Stimulated Raman scattering with an ini*.a.
phase shift: The pre-stage of a soliton”, Opt. Commun. =7
285-289 (1986) ;

17. J5.C. Znglund ard C.M. Bowcden "Spontaneous generation L
Raman solitons from guantum noise", Phys. Rev. Lett. 957,
266.-2663 (1986}

18. M.G. Raymer, I.A. Walms.ey, J. Mostowski and B. Sobolews=za
"Quantum theory of Stokes pulse energy fluctuations”., .
Opt. Soc. Am. T I, 547 (1984);

9 ;.R. Ackerhalt and DLW ionni: "Solitons and four-wave
mizxing”, Phys. Rev. A 33, 3‘85-3198 {2936, ;

20. C.J. McXinstirie and 2.0. 2ZuBois: "Rel a\‘Ji: ic solitwry—wave
solutions 0f tre peat-wave eqguations”, ?Phy Rev. lets. =7,
2C022-2025 (13zZf)

21 2.5. Xaup: "A perlarba’lion expansion 0¥ the Zaxkharov-Grasat
inverse scatter-*g transforn”, SIAV . App Matnh. 721
121-133 197€};

22 0.J. Xaup and A.C. Newe.. "Solitons as partic.les,
oscillators, and in s.ow.y changing medila A singular
perturbation theory”, Proc. R. Soc. Lond. A 361, 413-44¢€
{(1978);

23. V.I. Xarpman: "Soliton evoliution in the presence of
per~turbaticon”, Physica Scrip+ta 2C, 462-473 (19792):

24. G.L. Lamb, Jr.: "Elements of so.liton Theory", Jochn Wiley and
Sons, Inc., New Yorkx, 198C,

25. S. Elyutin and Z.N. Zlgin: "Comment on recent onservaticn »f
solitons in stimuiated Paman scattering”, Opt. Commun. £Q,
104-106 (1936 ;

26 . 7 Caristen: persona. comnun tion, Tepartment of

he}
jo 2
.< P

cs, Montana

C wnica
State University.




T v

LR AP AR A

BEARIREE.A At

s )

M )

1y

r=

o2

ng.itude.
[

dd e
‘regllencies are in
nit is

FIGURE CAPTIOC

:gure . The thre

t.rst and second
“omponent  soLiAd ]
Faman, s L LTt W

lgure

TOMOYeTecnS T T a e

aAra.Ly il AL Tes

Ninerica

¢ resonant

*re hypertransient
et :

uning Is 0.
_ower, mili.e
, middle an
Freguen
time unit is

er

33
m
rt

R

- C.CHL T and
ldd e arnd upper s

and Lower

the initia

-

igure Numerica

ical
CASe

NS

e

~ -
] .
caly o
e
. b
At
g v
DL TN
- "
;T Ll
DLl
T
L
e
«1 . .
PR,
. i e
i
“-a D

c:i

the

a

ol

L

-

T
oL
~aLr

un.”*

Y
LTl

ponen

o *
arn -
v - .
. .
- e a
[ N
PR
. I
- .
- 3
e
. N
1
..
e

.
- e s
D a a2

Loe
Lol + -
I e

iej
Y Ny
v 3D
o
C e

>

. - -
Lae s
T g

- ~
> Talla
DS
e -
. >

e tre

-

]

ad

L -
B
. L1
- ..
e
s
-
Tl
L TE
B -

Wit

PEAN

I,
A
Nyt
M T

s

LD
~oaAa
v
~¢ry
E]
a.e
Sl
v ¥
e

V]

Ve

i

arl

'
1

and
i

-~ -
[P EOY -
W

L.
ey .
e
,"
RS
WL
.0

Wi
.o
FEN

L

a-

€

me .

A

1
D

e

!
T

s
ANp .
D TlAal
- - A

- -

ERRRIpe.

¥ 5 .
LTe R
RN

Tt e
C

= s
- 4"

W e T e
LSRN

5

£

SRR
-
[
v e -

a.

req

e :

i

R
preee

uer

w

o

ettt RS ol

s



)
‘l

L4

4

5508

LU N NN

‘et

3
[

(AR RN

-

N

.
‘

~

i
a

)
RO D

Cdlls
L R N

the off resonant case are shown for inhomogeneous broadering in

the transient
detuning is 0.
ower, middle
upper, middle

amp..tide. Frequenrclies are

tne time unit

Tig

hroadenin in
1 8a) and 0.05
beginning with

Figures sScoana

bhroadenin i
{8c; and C.?2

Figures 9a and
broadening in
t3a; and C.C:%
heginning wit

Figures 9c anrd
crovadening Iin
< and C.2 |

Leglinning with

ures 8a ard 8b The tempora. pump puise for homogeneous
£

regime. The Raman .ine width Is 1.571 and the
05, 0.1 and 0.2. In this sequence of values the
and upper so.id lines are the width, wnile the
and lower chain dotted lines are the soli*ton

In units radians per time unit, where
is *the initial soliton width,

the transient regime is shown for a detuning of
(8b) . ?i.ses a-=2 shown for a gain increment of
tne inlllal Dulse In the upper right part.

N O
(@]

33 Ln2 temporda. pump pu.se for homogeneous
the transient regime is shown for a detuning of 0..

8d) . Pu.ses are shown for a gain increment of 2

the initial pulse In the upper right part.

D The temporai pump puise for homogeneous

e transient regime is shown for a detuning of 0.0
D!. Pilses are shown for a gain increment of 2,
he in.*la. pulse in the upper right par*.

34 Tre temporal pump pulse for homogeneous
the *ransient* regime s shown for a detuning of 0.1
3d . Pulses are shown for a gain increment of

tne Initial pulse in the upper right part.

(28]




WIDTH

Z
)
—
—J
O
0




14t tat lae Yod Sob tan VL ¥ed Yag el P RO Sav Sallotafatuts Ak dud b Cale ' piuipd WO SV W R W W YT UL
»

y - SOLITON ~ WIDTH
: 101

’ 0.9

_ 0.8

5 0.7

: 0 10 20 30 40
: SOLITON AMPLITUDE

AL LSy
O
—
O
~D
’ O
w
O
=
O




LN Y

) l:‘_ L&)

Pd

1.2

0.7

AMPLITUDE AND WIDTH

10 20 30 40




0 5 10 15
AMPLITUDE AND WIDTH




P R W o T T e R T g T o T T I N T X X N Ty F Y I N I TR E P T TR T Y NI S E S N W W O O WY

bkl
(S )
avet

Fa oy

T
N0

5

u
(93]
m
K
(R}
th

u
(¥
o
o
i)

}

u
[
L]
¥

AN _ L ags

A)




[}
o
W
B
"

1
g}

i

D . - ] - - \ \ l‘ \ - - ., -. L ] a
RNIN " PHLCNA,  EAAIGI Y  LRRARAREE  RARARRARN



Satafaln,

W

. : :
Y

m

"
(B

J,_ 17 o

Y
it .

. LA RS L A N

RAAASYY CRERARDN



RIS VI T WORARARA MIT

—
p—

e TS, oy Nt P DEEA

"

R

-

e et

.,

A

.

FAT AT R AT AT AP

Y

A

-“A

of,

P~

o

o

\n‘l

“~

of o

A

ol

-t

..l-_




AT Y

)
e & 4 oA A a0

A

R A

4L,

CNODOM O

AaANSNAN,]

APPENDIX C

Effect of Medium Saturation and Coherence Relaxation
on the Propagation ot Raman Solitons

Christian J. Tourenne and hai J. Druhl
Department. ot Phvsics
Maharishi International University
Fairtieid, lowa 52536

ABSTRACT

The effects of medium saturation and homogeneous broadening on

the propagation of solitons in stimulated Raman scattering are
discussed. The d¢eneral problem including Stark shift and medium
saturation, but without broadening has tren solved by Kaup and Steu-
del using an extension of the AKNS method. For the limiting case of
negligible stark shift, we obtain first ordaer equations tor the
soliton width in the presence of homogeneous vroadening. We dse tnese
asymptot 1 solutions to discuss the eftect of medium saturation on
pulse narrowing and compiare them to a numer:ocal analvsis,
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In stimulated Raman scattering (SRS) energy i1s exchanged between two laser
beams at different frequencies by nonlinear interaction in a suitable medioum.
Energy is normally transferred trom the high trequency beam (pump) to the |ow
frequency beam (stokes). In both numerical [1] and laboratory [L,3]
experiments., solitonlike excitations have been created bv a sudden phase change
of 180 degrees in the 1njected stokes beam. In the presence of collisionai
coherence dex:av 1n the medium and for exact resonance, the pulse shows tne

features of temporal narrowing and acceleration in the laborators frame
(1.3,4].

The effect of coherence decav on the propagation of Raman solitons has
already been studied both analytically and numerically using asymptotic
perturbation theory [1,3,1]. In these studies however, certain effects like
medium saturation or dynamic Stark shitft were neglected.

In this paper, we discuss how medium saturation affects temporal puls::
narrowing, using a perturbative method which is based on the energy
conservation law for medium and optical fields {3].

The general problem of soliton propagation in stimulated Raman scattering
(SRS}, including Stark shift and medium saturation, has been solved by haup (6]
and Steudel [7] using an extension of the AKNS method {8]. In the presence of
collisional coherence decav and for the limiting case of negligible Stark
shift, kaup’'s and Steudel’s equations (6,7] for transient SRS become::

r = -0r -r,s (tol

l +)I 6[+ S+

trob. =S (1.2
$0 + 0+

(s ) = s.,r (1.-
+ N H;5+ :

(8. ). T - 1 s Ciw e
N ++

inowhich o= proportional 1o the medium volarizat ton tnducesi cv the Gpt oo
Pie s, r"?xs propertional to the population difterence Dbetween the 1o e ois
' othe kaman fransition, s, s oproportional to the fitfer nee o0 pnroton ureent
dencaties between the pump':m(i the stoncs beams s, 18 Lroport toral o e
product of the stokes clectrie tield and the comples conpugnate of e pamgs
ciectrie field, T oand v oare caime ang space Tike coortimates an oa resarded rome
frame and the subsceript- indoate o ial ditferent it ton with pespect to thees
coordbinates, Corsenent aniits nave teen chosen so o that ol ol ing

constants oare cqual e b oand the term -X.’+ descraibes o= ona ccherenoe
feviay Wit coherence time Y - vhers Y 1= the ansfuiar auman e Wit h, owe
nave net o considered popuiat o el Ton e W e s ume R R
Came Soinbe o muct conder tnad Y oberence oime,
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In the hypertransient regime ((r ) >>¥r ), the phvsical quantities vary
on a time scale much shorter than the dephasing time 1/y . In the iimit ¥=u,
equations (1.1) to (1.4) are integrable and exact solutions can be found using
an extension of the inverse spectral transform [6,7]. For the special case of
purely imaginary eigenvalues, the one-soliton solutions to equations (1.1) to
(1.4) are:

2 Y 2 2 . , ,

r, = —(ql -1/4) cosh(Zr)/((ri1 -1/4)cosh (Zr)+1/4) (2.1)
) N2 2 .
v, = -1 + (1/2)/(((11 -1/4)cosh (2p)+1/4) (2.2)
s = (2n ¢ 2-1/47’Smh(2 11700 2=1/4)1c0sh (2 +1/4) (2.4)
+ rll L I 'l Ind
Sy = -1 + ”?1 /((l) 1/4)0()5}1 (Z*Hl/-l) (<od)

where Ql 1s the imaginary part of the eigenvaliue and r:qlT - X/-lql .

[n this case, the optical fields are exactly in resonance with the Raman
transition. In the following we discuss the physical processes underlying
soliton propagation for different values of n . in the leading edge of the
pump pulse (p>0), s, 1s in phase with the induced polarization r 1in the
medium, leading to a decrease 1n s, (stokes scattering). In the trailing edge

<0), however, s, has changed sign and s, increases now with propagation
distance. This means that the stokes beam éxperiences loss with corresponding
gain for the pump beam f(antistokes scattering). By the same mechanism the
medium is excited in the leading edge ana deexcited in the trailing edge. Both
processes {loss and gain, excitation and deexcitation) are perfectliy balanced,
as 1s evident from the symmetric soliton shape.

Two limiting cases are of interest

a) whwnll,l becomes large (g. -se0), the above manalvticail solut tons are
cquivalent to the one soliton solutions Yound by chu and Scott (4] o thne case
in which medium saturation 1s neglected (ro =% -1); in this case. the temporal
width of the soriton is much smalier than the Rabi time , curing vhion
population inversion occurs, and the gain-ioss reversal petueen the stones and
the pump Denms occurs very rapidiyv;

b) when q approaches 1/2, the rise time of S becomes comparabis to the
A time ]Paxhnz to a population inversion tor Yhe medium. The of T-diagonal
matris element roois correspondingls small, leading t 0 a more graduni change n
the theld variables., s o consequence, a wide temporal plateau s formexd.

‘nothe transient redime tr oo Wr v, no analvtieal solution of equat fons
ol ot ci ol envasts n closed 4me tevcept an the Tinear redome 10§, whers
deplet ton of the pump beun 1= negliginle and the pump amplitude 18 assimed 1o

bee independent of L Howeser, for o Cintte damping rate (8 50), the phvsieal
mechanism responsible tor -oliton propagation in the hypertransient regime s
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,\"1 expected to be valid also for transient SRS ( any phase change for s, wiil lead
to gain-loss reversal and solitonliike excitations).
_: If the coherence decay time TC = 1/y 1is long compared to the pulse width,
e~ approximate solutions of equations (1.1) to (1.4) can be obtained tnrough
N perturbation theoretic methods [11]). Under experimental conditions {1j, the
N optical fields are given as functions of time and cne wants to find their
evolution in space. Kaup’'s ¢general perturbation theory [11] cannot therefore be
- directly applied, since the soliton 1s defined in terms of the optical fields,
- while the perturbation occurs in the equations for the medium variables. A
N, generalization to this case seems possible, and has been given for the limiting
-~ case a) above by Kaup [1Z2]. We shail here use a more simple and direct approach
> which uses the following energy conservation law derived from equations (1.2)
and (1.4):
P L. o= =(r, (3
< (83)}\ { \S)T )
- The basic assumption of our method is that for small ¥, the analytical
solutions of equations (1.1) to (1.4) have the form:
Es
? r :r‘°(rl (X)) + r! (4.1)
ne + + U +
."_ - PS - + ! L2
R Ty rx(rll(.\)) Ty (4.2
-t. X = g9 3 + 1 3.4
- s, 5+u21(§\)) s, (1..14)
° - 1
3. = 89 X + S, (1.4
5 Sq 5\5(71( 1) S )
. The first (zeroth order) terms are the unperturbed soiutions (Z2.1) to (2.:) 1n
- which '1 is assumed to be a function ot X\, and the <econd terms in the .bove
- equations are first order corrections to the one soliton solutions, vhich
v describe changes in shape.
".:'. By integrat ing the conservation law (3) between [2-00 and T=+60 | wre
o sbhtain:
- + 00
-:f: (d/dX) S, dT = - r (+4e0) - | Al
" Ihe t.me intogral or S, represents the temporal wiodth w f the optirond pulse:
'.T . + 0o
'."‘ W= f Sa T
. -«
y In order to caiculate the asymptotic salue of v i+60 5, we s cp 01 and
11.2) to obtain: h
(r Ty e T - ¥
+ 3 +
integrat ing both sides trom I'z-e to (2400, aed pememberind that e f0 -
diagonal matris element «nould vaprsh at T=+00 op -0 | we gt The to jowng

equation:
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too

Z <
o0 - = - ’
r,t+ ) 1 2y r, dT )

~ 00
since r,(-® J=-1. Equation (6) shows that the asvmptotic value of v at Tz+o00
1s not £qual to -1. Due to coherence decay, the perfect balance between medium
excitation and deexcitation 1s upset: at the trairling edge of the pulse, the
medium polarization 1s smaller than at the leading edge. As a result, o
fraction ot atoms gets trapped in the upper level of the Raman trans:tion.

] . . S
o To first order in ¥, the populat ion difference r (+#00) 15 given by
r\ +” ‘ﬂ
N 2
F\ r.(+00 ), - 1 +¥/] v ot {7
- 3 +
s -
Now combining equations (H) and (7)), we obtain our thnal result tor the spat il
. dependence of the soliton sidth:
! + 00
tu‘ dw/aX = - § r*" a1 {8
- o0

M

We require that the pulse width w 1s entirely determined by the one = f1ton
part e of the solution: +00
Wz sg dT

o
To tirst order ind, the right hand side <t equat.on (8, 15 determined Dy the
one soliton contribution only: hence:

dw/ds ~ - ¥ r:" AT e
- oo
in which 1s now 1 tunction ot . The two intedrals are east e caiadotgates] o
using the solutions (2.0 and 2.1 and the to llowing result=s are Hhtarnesd:
+ 00
dw/dN = (d/d\ (sz+1) dT = d/dN l;iu(n21141);z;ql—;>)i P
- oo
+ o0
r°2 AT = (l/Zq d)[lﬂtq :-2/1) Vi REITRN IR R
¥ 1 1 i ‘ T
- o
‘he temporal swidth of the soliton s related vo the mmagiars part rohe

eigenvalue by k:zt.nl(Z?lH)/(ZQl—l)l. Fquatiton (45 togetner wotn 0 ane
11y, lead to the following differentiar equatton tor Cre wnitn

Aw/dX = d¥(expiwitwexpn /21 =11 {2expn/Cr—oxpln =1 tenpon e lonpin el

This equation has two interesting limiting cases:
* when\'[ 15 large (negligible medium sotuarat s ni, Toe a0 o it S

inversely proportional to the square root ot v

|
WIN) A 270N+ w0l T q, =
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1n accordance with a previous perturbation analysis of the unsaturated case
(91

* vhen the medium has a large medium saturation ( n,— 172y, the =oliton

: : ! 1
width decreases proportionally to X:

WXy - N + w(0) (ql—pl/‘Z) (1)

In order to check the accuracy of our perturbation method, we have solved
equations (1.1) to (1.4) numerically; the Raman medium was assumed to be
located in the half space X0 and not excited initially; tor optical pulses oof
finite duration, the boundarsy conditions were:

It

tor T>0: r‘+(X.T:()) 1)

rB(X.T:()) -0

s (X=0,T) = 5 (X=0,T)
+ +
S'i('\:()’T) = s‘,s(xzt),'l')
tor T<O: %*(?\':().T) =0
S‘,‘(ﬁ\‘:(),'l") =

The 1nittial tfields were tahen 1o ve equal to their one sollton form ar the
entrance ot the Raman cell (\z0) and thelr evolutlon was then calouiatoed, ax
the pulses propagated into the coll (Xe0), by solving (B.1) co ol
muamerioally, for ditterent initiai values of l'l] and tfor ditferent =smaii viaaes
Of Trhe homogeneous broadening parameter § . The sociton width grven oyt
ramerieal o =oiutions tor s tor different values f the dain iendgth v owas then
cmpared to the analvtr al solition for the comporas widtn Liven v oquas oon

Dl

oo Uig. L oand 2, e stucet how the anay b vt ren, et numerenal pestait s oMyt

varn, -, ¥zt oand n =u.oh ¥ zu.oo respectivelny The width soss choser, o
t
pt thee o diton el wifnin the area of Integration, seoding prep < 1ron b

catter Jrocedure csponent pal v osmadc, The solia curce anag the jaoant st s are
the numertoal and apalvtieal widtng respect ey, s o sanct e U w0 o tne

rerporal Raman sclitons. At hiigher gnatral medpun satarat: on, the tenden
townrds oo Dinear deperndencss ot o on The BUEOpintAt Do ST anees e come= Lo s
“roboth ciases, nmer e wtoana sy oond results o rose s agree, s e

bty e appr s amit Lo
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